As-built Documentation and Reverse Engineering Derived from Laser Scanning

Ivo Milev1
Lothar Gruendig2

1 Technet GmbH, 10777 Berlin, Germany
2 Technical University Berlin, 10624 Berlin, Germany

Project structure and project management

Common conditions:
- Data base related point cloud management
- Object oriented data processing
- Nodes, Edges, Polygons, Surfaces, Volume bodies
- As build documentation and related maintenance

North Pavilion – Big Colonnades
Schloss Sanssouci

Feasibility study using laser scanning technology for cultural heritage purpose

RIEGL LMS Z360i environment scanner was used

Registration of the Scanner Stations Data

- Targets placed on the object
- Station linkage via non natural references placed in the scans
 - Cylinder
 - Sphere
- Object space references
 - Planes
 - Curved surfaces
- Iterative-Closest-Point-Method

Outlines

- Project structure
- Unique reference frame
- Tools for data processing
- Surface approximation
- Data acquisition of railway facilities
- Clearance simulation

Final products derived from the Laser scan data processing?
North Pavilion – Big Colonnades

Data Acquisition - 14 Scans

Processing tools

- Fitting of geometrical primitives like lines, circles, ellipses, planes, spheres, cylinders and cones
- Non completed point clouds fitting of circle and ellipses curves, sphere segments, parts of cylinders, cone obuse
- Fitting of cover elements for circle, sphere and quader (important for the segmentation - the so called functional patches)
- Fitting of smooth free form curves (NURBS)
- Comparison between the point cloud and the fitted element with deflections, measuring against CAD and false color visualization

Non Uniform Rational B-Spline (NURBS)

- NURBS have a precise and well-known definition.
- NURBS can accurately represent both: standard geometric objects like lines, circles, ellipses, spheres and tori, and free-form geometry like car bodies, other complex double curved surfaces also human bodies.
- The amount of information required for a NURBS representation of a piece of geometry is much smaller than the amount of information required by common faceted approximations
- NURBS can be implemented on a computer in a way that is both efficient and accurate.
Generation of free form surfaces

Measuring distances between free form surfaces

Feasibility study Railway

3D Data - Restriction

Automated Rail Geometry Recovery (ARGR)

TLS for 3D Data Acquisition

Microprocessor Forum

Oct 13 & 14
Clearance drive through Simulation

Source DB-Net system specifications
Drive dynamic und clearance

TLS in 2D CAD Applications

Conclusions
Very high algorithmic complexity using adjustment with resulting accuracy and quality improvement

- Data reduction/filtering
- Point cloud Registration(Transformation) of the single stations in a unique reference system
- Calculation of planes and profiles
- Extraction of panoramas and Orthophotos
- Deduction of form functions

This in the highest possible degree of automation

Contact
ivo.milev@technet-gmbh.de