Addressing Quality Requirements in GIS Architectures

Ibrahim Habli
GIS Services Division
Khatib & Alami (CEC)
Lebanon

Tim Kelly
Department of Computer Science
University of York
United Kingdom

1

High Quality GIS

- Attention is often paid to GIS functionalities.
- However, quality aspects are insufficiently addressed. A GIS would be:
 - Ineffective if it processing misses deadlines
 - Unreliable if it is not available when it should be
 - Unusable if it is difficult to understand
- Hence, high quality GIS systems depend on qualities, such as:
 - Efficiency
 - Reliability
 - Usability
 - Security

2

Problems with GIS Quality Requirements

- Complexity and large volume of geographic information
- Often not systematically captured & documented
- Common to find ambiguous statements such as:
 - "System shall be portable"
 - "System shall be highly secured"
 - "GIS operations shall be efficient"
- Hence, no feasible means to assess whether the system has met its quality requirements or not

3

Solution: Architectural Framework

- Based on two architectural techniques from the Software Engineering Institute (SEI):
 - Quality Attribute Scenarios
 - Attribute Driven Design Method (ADD)

4

Quality Attribute Scenarios

- SEI quality attribute scenarios consist of 6 yardsticks:
 1. Source of stimulus
 2. Stimulus
 3. Environment
 4. Artifact
 5. Response
 6. Response measure

5

Attribute Driven Design Method

- Attribute Driven Design Method (ADD) is a recursive approach to software architecture design based on the quality attributes the software needs to achieve

6
Achieving GIS Quality Requirements using ADD

- **Quality requirement scenarios addressed:**
 - Performance
 - Editing a Geographic Feature
 - Retrieve Data
 - Modifiability
 - Change GIS Data Format
 - Add GIS Component
 - Interface GIS with an External Software System

First Level of Decomposition

- **Scenarios addressed at this stage:**
 - Add GIS Component
 - Change GIS Data Format
 - Editing a Geographic Feature
 - Retrieve Data

- **Architectural Decisions:**
 - Maintain a semantic coherence
 - Published interfaces
 - Client-Server
 - Minimize clients & servers interaction

Second Level of Decomposition: Applications Subsystem Decomposition

- **Scenarios addressed at this stage:**
 - Mediator design pattern
 - Use geographic information standards
 - Separation and operation

- **Architectural Decisions:**
 - Interface GIS with an External Software System
 - Editing a Geographic Feature
 - Retrieve Data

Evaluation: GIS Quality Attribute Scenarios

- **Understandability:** scenarios unambiguously define factors controlling the achievement of quality attributes
- **Precision:** response and response measure offer specific means for assessing GIS architectures
- **Traceability:** decomposing each quality attribute into scenarios enables traceability of how an attribute is addressed during the architectural design and evaluation

Evaluation: GIS Architecture Design

- **Attribute Driven Design Method:**
 - Simplifies architectural design process
 - Systematic consideration of quality attributes
 - Mapping between quality attribute scenarios & architectural decisions

- **Design Documentation:**
 - Well organized architectural documentation
 - Record of architectural design decisions applied, resultant architectural views and underlying design rationale
Q&A